Received 24 October 2005 Accepted 5 December 2005

Online 10 December 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhao-Peng Deng, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.014 \text{ Å}$ R factor = 0.041 wR factor = 0.168 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[aquadiimidazolecadmium(II)]μ-thiophene-2,5-dicarboxylato]

The Cd^{II} atom has distorted pentagonal bipyramidal coordination geometry in the coordination polymer [Cd(TDA)-(Him)₂(H₂O)]_n [where TDA²⁻ is the thiophene-2,5dicarboxylate dianion (C₆H₂O₄S²⁻) and Him is imidazole (C₃H₄N₂)]. The cadmium ion is bound by four carboxylate O atoms from two independent TDA²⁻ groups, two N atoms from two different imidazole ligands, and one water molecule. The carboxylate groups bind in bidentate mode to the Cd center, forming a linear chain structure such that the closest Cd···Cd distance is 10.577 (6) Å. The polymeric chains are connected *via* hydrogen bonds and π - π stacking interactions into a three-dimensional network.

Comment

Thiophene-2,5-dicarboxylic acid (H₂TDA) is reported to be a potential anticancer agent (Sahasrabudhe *et al.*, 1960), and additionally an excellent building block for constructing coordination polymers (Chen *et al.*, 1993). In previously studied polymers of this type, the versatile H₂TDA ligand shows a variety of binding modes to metal ions, from mono- to tetradentate (Chen *et al.*, 1998, 1999). In order to further the study of H₂TDA coordination modes, we report here the synthesis and crystal structure of the title Cd^{II} coordination polymer, [Cd(TDA)(Him)₂(H₂O)]_n, (I). It was obtained by the hydrothermal reaction of cadmium dinitrate tetrahydrate, thiophene-2,5-dicarboxylic acid and imidazole (Him) in an aqueous solution.

As illustrated in Fig. 1, the asymmetric unit of (I) consists of one Cd^{II} ion, one TDA^{2-} dianion, two imidazole ligands and one coordinated water molecule. Each Cd^{II} atom is sevencoordinate and bound by four carboxylate O atoms from two independent TDA^{2-} groups, two N atoms from two different imidazole ligands, and one water molecule. The local coordination of the Cd^{II} atom can be described as distorted pentagonal bipyramidal. The equatorial pentagonal plane is

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Figure 1

ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) x, y - x1, z].

Figure 2

The linear chain structure of the title complex. H atoms attached to C atoms have been omitted.

defined by atoms O1, O2, O3ⁱ, O4ⁱ and N1 [symmetry code: (i) x, y - 1, z]. Atom N3 and the water molecule occupy the axial sites. The smallest O–Cd–O angle, 49.1 (3) $^{\circ}$, is attributed to the bis-chelate coordination of the TDA²⁻ ligand that forms two four-membered rings. It should be noted that the two C-O bond distances of the carboxylate group (O3/C6/O4) are almost equivalent, and so in agreement with its delocalized state, whereas the O2–C1 distance is longer than the O1–C1 distance, in accordance with the formal double-bond character of the O1-C1 bond. The dihedral angles between the two carboxylate groups and the thiophene ring are $5.3 (4)^{\circ} (O1/$ C1/O2) and 6.0 (4) $^{\circ}$ (O3/C6/O4), respectively, demonstrating that the TDA^{2-} ligand is basically planar.

Each TDA²⁻ group binds in bis-bidentate chelating mode to link neighboring Cd^{II} atoms to form a one-dimensional linear chain structure which is propagated parallel to the *b* axis (Fig. 2), in which the closest Cd \cdots Cd distance is 10.577 (6) Å. Furthermore, the water and imidazole molecules form extensive intermolecular hydrogen bonds with carboxylate O atoms (Table 2). There are $\pi - \pi$ stacking interactions between adjacent thiophene rings, the centroid-centroid separation being 3.694 (6) Å. The polymeric chains align in a manner that

Figure 3

Packing diagram of the title complex, viewed along the a axis. The hydrogen bonds are shown as dashed lines. H atoms attached to C atoms have been omitted.

facilitates both hydrogen-bonding and π - π stacking interactions, leading to a three-dimensional supramolecular network (Fig. 3).

Experimental

Cadmium dinitrate tetrahydrate (3.08 g, 10 mmol) was added to an aqueous solution of thiophene-2,5-dicarboxylic acid (1.72 g, 10 mmol). The pH was adjusted to 6 with 0.1 M sodium hydroxide. Imidazole (1.34 g, 20 mmol) was then added. The mixture was stirred for 1 h and then sealed in a 50 ml Teflon-lined stainless steel bomb and held at 383 K for 3 d. The bomb was cooled naturally to room temperature, and colorless prismatic crystals of (I) were obtained. Analysis calculated for C₁₂H₁₂N₄O₅SCd: C 33.00, H 2.77, N 12.83%; found: C 32.96, H 2.74, N 12.85%.

Crystal data	
$[Cd(C_6H_2O_4S)(C_3H_4N_2)_2(H_2O)]$	Z = 2
$M_r = 436.72$	$D_x = 1.838 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 7.7486 (15) Å	Cell parameters from 7316
b = 10.577 (2) Å	reflections
c = 10.947 (2) Å	$\theta = 3.0-27.5^{\circ}$
$\alpha = 103.71 \ (3)^{\circ}$	$\mu = 1.55 \text{ mm}^{-1}$
$\beta = 101.57 \ (3)^{\circ}$	T = 295 (2) K
$\gamma = 108.43 \ (3)^{\circ}$	Prism, colorless
V = 789.1 (4) Å ³	$0.36 \times 0.24 \times 0.18 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID	3564 independent reflections
diffractometer	2125 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.086$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -9 \rightarrow 10$
$T_{\min} = 0.641, \ T_{\max} = 0.761$	$k = -13 \rightarrow 13$
7628 measured reflections	$l = -14 \rightarrow 11$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.041$	independent and constrained
$wR(F^2) = 0.168$	refinement
S = 1.06	$w = 1/[\sigma^2(F_0^2) + (0.0795P)^2]$
3564 reflections	where $P = (F_0^2 + 2F_c^2)/3$
214 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 1.78 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -1.65 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-O1w	2.341 (6)	Cd1-N3	2.269 (7)
Cd1-O1	2.829 (6)	O1-C1	1.227 (14)
Cd1-O2	2.318 (6)	O2-C1	1.249 (14)
Cd1-O3 ⁱ	2.503 (6)	O3-C6	1.244 (9)
Cd1-O4 ⁱ	2.413 (6)	O4-C6	1.248 (10)
Cd1-N1	2.267 (8)		
N3-Cd1-O1	80.4 (3)	O2-Cd1-O1w	83.2 (2)
O1w-Cd1-O1	86.1 (3)	N1-Cd1-O4 ⁱ	84.6 (3)
O2-Cd1-O1	49.1 (3)	N3-Cd1-O4 ⁱ	103.5 (2)
$O1-Cd1-O3^{i}$	84.4 (3)	O2-Cd1-O4 ⁱ	165.8 (2)
$O1-Cd1-O4^{i}$	136.0 (2)	$O1w-Cd1-O4^{i}$	84.1 (2)
O1-Cd1-N1	139.2 (2)	N1-Cd1-O3 ⁱ	136.3 (2)
N1-Cd1-N3	96.3 (3)	N3-Cd1-O3 ⁱ	86.4 (2)
N1-Cd1-O2	90.5 (3)	$O2-Cd1-O3^{i}$	133.2 (2)
N3-Cd1-O2	90.2 (2)	$O1w-Cd1-O3^{i}$	89.3 (2)
N1-Cd1-O1w	95.8 (2)	$O4^i - Cd1 - O3^i$	52.7 (2)
N3-Cd1-O1w	166.2 (2)		

Symmetry code: (i) x, y - 1, z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O1w−H1w1···O3 ⁱⁱ	0.85 (7)	1.93 (4)	2.732 (8)	157 (8)
$O1w - H1w2 \cdot \cdot \cdot O1^{iii}$	0.85 (6)	1.96 (3)	2.770 (10)	160 (7)
$N2-H14\cdots O4^{iv}$	0.86	1.92	2.758 (10)	165
$N4-H15\cdots O2^{v}$	0.86	1.97	2.826 (10)	171

Symmetry codes: (ii) -x, -y + 1, -z; (iii) -x, -y, -z; (iv) -x, -y + 1, -z + 1; (v) x + 1, y, z.

The H atoms attached to C atoms and imidazole N atoms were placed in calculated positions, with C-H = 0.93 Å, N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$, and were refined with the riding-model approximation. Water H atoms were located in a difference Fourier map and refined with O-H and $H \cdots H$ distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and with $U_{iso}(H) = 1.5U_{eq}(O)$. The largest residual peak is 1.08 Å from the Cd atom and the deepest is hole is 0.9 Å from the same atom.

Data collection: *RAPID-AUTO* (Rigaku Corporation, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

- Chen, B. L., Mok, K. F., Ng, S. C. & Drew, M. G. B. (1999). Polyhedron, 18, 1211–1220.
- Chen, B. L., Mok, K. F., Ng, S. C., Feng, Y. L. & Liu, S. X. (1998). *Polyhedron*, **17**, 4237–4247.
- Chen, C. T. & Suslick, K. S. (1993). Coord. Chem. Rev. 128, 293-322.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPH. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.

- Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sahasrabudhe, M. B., Nerurkar, M. K., Nerurkar, M. V., Tilak, B. D. & Bhavasar, M. D. (1960). Br. J. Cancer. 14, 547–554.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.