Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Peng Deng, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.041$
$w R$ factor $=0.168$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[aquadiimidazolecadmium(II)]-μ-thiophene-2,5-dicarboxylato]

The $\mathrm{Cd}^{\text {II }}$ atom has distorted pentagonal bipyramidal coordination geometry in the coordination polymer $[\mathrm{Cd}(\mathrm{TDA})$ $\left.(\operatorname{Him})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n} \quad\left[\right.$ where TDA^{2-} is the thiophene-2,5dicarboxylate dianion $\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{~S}^{2-}\right)$ and Him is imidazole $\left.\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)\right]$. The cadmium ion is bound by four carboxylate O atoms from two independent TDA^{2-} groups, two N atoms from two different imidazole ligands, and one water molecule. The carboxylate groups bind in bidentate mode to the Cd center, forming a linear chain structure such that the closest $\mathrm{Cd} \cdots \mathrm{Cd}$ distance is 10.577 (6) \AA. The polymeric chains are connected via hydrogen bonds and $\pi-\pi$ stacking interactions into a three-dimensional network.

Comment

Thiophene-2,5-dicarboxylic acid $\left(\mathrm{H}_{2} \mathrm{TDA}\right)$ is reported to be a potential anticancer agent (Sahasrabudhe et al., 1960), and additionally an excellent building block for constructing coordination polymers (Chen et al., 1993). In previously studied polymers of this type, the versatile H_{2} TDA ligand shows a variety of binding modes to metal ions, from mono- to tetradentate (Chen et al., 1998, 1999). In order to further the study of H_{2} TDA coordination modes, we report here the synthesis and crystal structure of the title $\mathrm{Cd}^{\mathrm{II}}$ coordination polymer, $\left[\mathrm{Cd}(\mathrm{TDA})(\mathrm{Him})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, (I). It was obtained by the hydrothermal reaction of cadmium dinitrate tetrahydrate, thiophene-2,5-dicarboxylic acid and imidazole (Him) in an aqueous solution.

(I)

As illustrated in Fig. 1, the asymmetric unit of (I) consists of one $\mathrm{Cd}^{\mathrm{II}}$ ion, one TDA^{2-} dianion, two imidazole ligands and one coordinated water molecule. Each $\mathrm{Cd}^{\mathrm{II}}$ atom is sevencoordinate and bound by four carboxylate O atoms from two independent TDA ${ }^{2-}$ groups, two N atoms from two different imidazole ligands, and one water molecule. The local coordination of the $\mathrm{Cd}^{\mathrm{II}}$ atom can be described as distorted pentagonal bipyramidal. The equatorial pentagonal plane is

Received 24 October 2005 Accepted 5 December 2005 Online 10 December 2005

Figure 1
ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) $x, y-$ $1, z]$.

Figure 2
The linear chain structure of the title complex. H atoms attached to C atoms have been omitted.
defined by atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3^{\mathrm{i}}, \mathrm{O} 4^{\mathrm{i}}$ and N 1 [symmetry code: (i) $x, y-1, z]$. Atom N3 and the water molecule occupy the axial sites. The smallest $\mathrm{O}-\mathrm{Cd}-\mathrm{O}$ angle, $49.1(3)^{\circ}$, is attributed to the bis-chelate coordination of the TDA^{2-} ligand that forms two four-membered rings. It should be noted that the two $\mathrm{C}-$ O bond distances of the carboxylate group ($\mathrm{O} 3 / \mathrm{C} 6 / \mathrm{O} 4$) are almost equivalent, and so in agreement with its delocalized state, whereas the $\mathrm{O} 2-\mathrm{C} 1$ distance is longer than the $\mathrm{O} 1-\mathrm{C} 1$ distance, in accordance with the formal double-bond character of the $\mathrm{O} 1-\mathrm{C} 1$ bond. The dihedral angles between the two carboxylate groups and the thiophene ring are $5.3(4)^{\circ}(\mathrm{O} 1 /$ $\mathrm{C} 1 / \mathrm{O} 2)$ and $6.0(4)^{\circ}(\mathrm{O} 3 / \mathrm{C} 6 / \mathrm{O} 4)$, respectively, demonstrating that the TDA ${ }^{2-}$ ligand is basically planar.

Each TDA ${ }^{2-}$ group binds in bis-bidentate chelating mode to link neighboring $\mathrm{Cd}^{\mathrm{II}}$ atoms to form a one-dimensional linear chain structure which is propagated parallel to the b axis (Fig. 2), in which the closest Cd…Cd distance is 10.577 (6) \AA. Furthermore, the water and imidazole molecules form extensive intermolecular hydrogen bonds with carboxylate O atoms (Table 2). There are $\pi-\pi$ stacking interactions between adjacent thiophene rings, the centroid-centroid separation being 3.694 (6) A. The polymeric chains align in a manner that

Figure 3
Packing diagram of the title complex, viewed along the a axis. The hydrogen bonds are shown as dashed lines. H atoms attached to C atoms have been omitted.
facilitates both hydrogen-bonding and $\pi-\pi$ stacking interactions, leading to a three-dimensional supramolecular network (Fig. 3).

Experimental

Cadmium dinitrate tetrahydrate ($3.08 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an aqueous solution of thiophene-2,5-dicarboxylic acid (1.72 g , 10 mmol). The pH was adjusted to 6 with 0.1 M sodium hydroxide. Imidazole ($1.34 \mathrm{~g}, 20 \mathrm{mmol}$) was then added. The mixture was stirred for 1 h and then sealed in a 50 ml Teflon-lined stainless steel bomb and held at 383 K for 3 d . The bomb was cooled naturally to room temperature, and colorless prismatic crystals of (I) were obtained. Analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{SCd}$: C 33.00, H 2.77 , N 12.83%; found: C 32.96, H 2.74, N 12.85\%.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{~S}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=436.72$
Triclinic, $P \overline{1}$
$a=7.7486$ (15) A
$b=10.577$ (2) \AA
$c=10.947$ (2) \AA
$\alpha=103.71$ (3) ${ }^{\circ}$
$\beta=101.57$ (3) ${ }^{\circ}$
$\gamma=108.43$ (3) ${ }^{\circ}$
$V=789.1$ (4) \AA^{3}

$$
Z=2
$$

$D_{x}=1.838 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7316 reflections
$\theta=3.0-27.5^{\circ}$
$\mu=1.55 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colorless $0.36 \times 0.24 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.641, T_{\text {max }}=0.761$
7628 measured reflections

[^0]
Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.168$
$S=1.06$
3564 reflections
214 parameters

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0795 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=1.78$ e \AA^{-3}
> $\Delta \rho_{\min }=-1.65 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{O} 1 w$	$2.341(6)$	$\mathrm{Cd} 1-\mathrm{N} 3$	$2.269(7)$
$\mathrm{Cd} 1-\mathrm{O} 1$	$2.829(6)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.227(14)$
$\mathrm{Cd} 1-\mathrm{O} 2$	$2.318(6)$	$\mathrm{O} 2-\mathrm{C} 1$	$1.249(14)$
$\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.503(6)$	$\mathrm{O} 3-\mathrm{C} 6$	$1.244(9)$
$\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$2.413(6)$	$\mathrm{O} 4-\mathrm{C} 6$	$1.248(10)$
$\mathrm{Cd} 1-\mathrm{N} 1$	$2.267(8)$		
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{O} 1$	$80.4(3)$	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1 w$	$83.2(2)$
$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 1$	$86.1(3)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$84.6(3)$
$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 1$	$49.1(3)$	$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$103.5(2)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$84.4(3)$	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$165.8(2)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{O} 4^{\mathrm{i}}$	$136.0(2)$	$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$	$84.1(2)$
$\mathrm{O} 1-\mathrm{Cd} 1-\mathrm{N} 1$	$139.2(2)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$	$136.3(2)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 3$	$96.3(3)$	$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$	$86.4(2)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 2$	$90.5(3)$	$\mathrm{O} 2-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$	$133.2(2)$
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{O} 2$	$90.2(2)$	$\mathrm{O} 1 w-\mathrm{Cd} 1-\mathrm{O} 3^{\mathrm{i}}$	$89.3(2)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{O} 1 w$	$95.8(2)$	$\mathrm{O} 4^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{O}^{\mathrm{i}}$	$52.7(2)$
$\mathrm{N} 3-\mathrm{Cd} 1-\mathrm{O} 1 w$	$166.2(2)$		

Symmetry code: (i) $x, y-1, z$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $w-\mathrm{H} 1 w 1 \cdots$ O $^{\text {ii }}$	$0.85(7)$	$1.93(4)$	$2.732(8)$	$157(8)$
O1 $^{\text {in }} w-\mathrm{H} 1 w 2 \cdots$ O $^{\text {iii }}$	$0.85(6)$	$1.96(3)$	$2.770(10)$	$160(7)$
N2-H14 \cdots O $^{\text {iv }}$	0.86	1.92	$2.758(10)$	165
N4-H15 \cdots O2 v	0.86	1.97	$2.826(10)$	171

Symmetry codes: (ii) $-x,-y+1,-z$; (iii) $-x,-y,-z$; (iv) $-x,-y+1,-z+1$; (v) $x+1, y, z$.

The H atoms attached to C atoms and imidazole N atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, and were refined with the riding-model approximation. Water H atoms were located in a difference Fourier map and refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints of 0.85 (1) and 1.39 (1) \AA, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. The largest residual peak is $1.08 \AA$ from the Cd atom and the deepest is hole is $0.9 \AA$ from the same atom.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

Chen, B. L., Mok, K. F., Ng, S. C. \& Drew, M. G. B. (1999). Polyhedron, 18, 1211-1220.
Chen, B. L., Mok, K. F., Ng, S. C., Feng, Y. L. \& Liu, S. X. (1998). Polyhedron, 17, 4237-4247.
Chen, C. T. \& Suslick, K. S. (1993). Coord. Chem. Rev. 128, 293-322.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sahasrabudhe, M. B., Nerurkar, M. K., Nerurkar, M. V., Tilak, B. D. \& Bhavasar, M. D. (1960). Br. J. Cancer. 14, 547-554.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: 3564 independent reflections 2125 reflections with $I>2 \sigma(I)$
 $R_{\text {int }}=0.086$
 $\theta_{\text {max }}=27.5^{\circ}$
 $h=-9 \rightarrow 10$
 $k=-13 \rightarrow 13$
 $l=-14 \rightarrow 11$

